Buy Rational Quadratic Forms (Dover Books on Mathematics) on ✓ FREE SHIPPING on qualified orders. J. W. S. Cassels (Author). out of 5. O’Meara, O. T. Review: J. W. S. Cassels, Rational quadratic forms. Bull. Amer. Math. Soc. (N.S.) 3 (), The theory of quadratic forms over the rational field the ring of rational integers is far too extensive to deal with in a single lecture. Our subject here is the.

Author: Shabar Akinomi
Country: Bermuda
Language: English (Spanish)
Genre: Business
Published (Last): 11 August 2007
Pages: 171
PDF File Size: 5.30 Mb
ePub File Size: 13.74 Mb
ISBN: 633-2-52077-288-2
Downloads: 24665
Price: Free* [*Free Regsitration Required]
Uploader: Shaktirg

No eBook available Amazon.

Read, highlight, and take notes, across web, tablet, and phone. Account Options Sign in.

My library Help Advanced Book Search. Courier Dover PublicationsAug 8, – Mathematics – pages. This exploration of quadratic forms over rational numbers and rational integers offers an excellent elementary introduction to many aspects of a classical subject, including recent developments.

Rational Quadratic Forms – J. W. S. Cassels – Google Books

The author, a Professor Emeritus at Trinity College, University of Cambridge, offers a largely self-contained treatment that develops most of the prerequisites. Topics include the theory of quadratic forms over local fields, forms with integral coefficients, genera and spinor genera, reduction theory for definite forms, and Gauss’ composition theory. The final chapter explains how to formulate the proofs in earlier chapters independently of Dirichlet’s theorems related to the existence of primes in arithmetic progressions.


Specialists will caesels value the several helpful appendixes on class numbers, Siegel’s formulas, Tamagawa numbers, and other topics.

Each chapter concludes with many exercises and hints, plus notes that include historical remarks and references to the literature. Selected pages Title Page.

Rational Quadratic Forms

Quadratic Forms Over Local Fields. Tools from the Geometry of Numbers. Quadratic Csasels over the Rationals. Quadratic Forms over Integral Domains.

Integral Forms over the Rational Integers. The Spin and Orthogonal Groups.

There was a problem providing the content you requested

Automorphs of Integral Forms. Composition of Binary Quadratic Forms. Cassels Limited preview – Common terms and phrases algebraic number fields anisotropic autometry basis binary forms Chapter 11 Chapter 9 classically integral form clearly coefficients concludes the proof Corollary corresponding defined denote dimension Dirichlet’s theorem discriminant domain elements equivalence class example finite number finite set follows form f form f x form of determinant formula fundamental discriminant Further Gauss given gives Hasse Principle Hence Hint homomorphism implies indefinite integral automorphs integral vector integrally equivalent formz isotropic over Q lattice Let f Let f x linear matrix modular forms modulo Norm Residue Symbol notation Note quuadratic group p-adic unit Pell’s equation positive integer precisely primitive integral proof of Theorem properly equivalent properties prove quadratic ratlonal quadratic space rational reduced forms satisfies Section set of primes Show Siegel solution spin group Spin V spinor genera spinor genus subgroup ternary form Theorem 3.


Rational Quadratic Forms J.